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On the dynamics of unsteady gravity waves of 
finite amplitude 

Part 1. The elementary interactions 
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Mechanics Department, The J o b  Hopkins University, 

Baltimore, Maryland 

(Received 12 March 1960) 

This paper is concerned with the non-linear interactions between pairs of inter- 
secting gravity wave trains of arbitrary wavelength and direction on the surface 
of water whose depth is large compared with any of the wavelengths involved. 
An equation is set up to describe the time history of the Fourier components of 
the surface displacement in which are retained terms whose magnitude is of 
order (slope)2 relative to the linear (first-order) terms. The second-order terms 
give rise to Fourier components with wave-numbers and frequencies formed by 
the sums and differences of those of the primary components, and the amplitudes 
of these secondary components is always bounded in time and small in magnitude. 
The phase velocity of the secondary components is always different from the 
phase velocity of a free infinitesimal wave of the same wave-number. However, 
the third-order terms can give rise to tertiary components whose phase velocity is 
equal to the phase velocity of a free infinitesimal wave of the same wave-number, 
and when this condition is satisfied the amplitude of the tertiary component 
grows linearly with time in a resonant manner, and there is a continuing flux of 
potential energy from one wave-number to another. The time scale of the growth 
of the tertiary component is of order of the ( - 2)-power of the geometric mean of 
the primary wave slopes times the period of the tertiary wave. The Stokes per- 
manent wave appears as a special case, in which the tertiary wave-number is the 
same as that of the primary, but its phase is advanced by +IT. The energy transfer 
to the tertiary component in this case is usually interpreted as an increase in 
the phase velocity of the wave. 

The dynamical interactions in water of finite depth are considered briefly, and 
it is shown that the amplitude of the secondary components becomes large 
(though bounded in time) as the water depth becomes smaller than the wave- 
length of the longest primary wave. 

1. Introduction 
In  this paper, a start is made towards developing a theory to describe the 

dynamics of the non-linear interactions of a random field of gravity waves of 
finite amplitude, such as is generated by wind blowing over the sea. In  the initial 
stages of the development of an ocean wave system under the influence of wind, 

13 Fluid Mech. 9 



194 0. M .  PhiUips 

it is probable that the resonance theory (Phillips 1957, 19583) provides the 
dominant mechanism whereby energy is transferred from the wind to the waves. 
As the waves develop, however, some ‘sheltering’ mechanism such au that 
described by Miles (1957, 1959) for infinitesimal waves, becomes increasingly 
effective. Also there is the certainty that sooner or later the wave amplitudes 
will be such that non-linear interactions among the wave components begin to 
modify the rate of growth of a particular Fourier component by interchange of 
energy from one component to another. We have, at  present, no indication 
whether this will occur before, or after, the sheltering effect has become dominant 
nor of the interplay between these two mechanisms. Ultimately, however, if 
the wind duration is sufficiently great, it appears that a saturation value of the 
spectral amplitude may be attained (Phillips 1958a) beyond which any further 
development results in an instability of the sea surface and a loss of energy from 
the wave system by the formation of ‘ white-caps ’ or ‘white horses ’. 

It is clear that in order to evaluate the relative roles of the various mechanisms 
during the generation, a statistical theory of the non-linear interactions will 
have to be set up. But a number of difficulties present themselves. The most 
feasible method of approach seems to be in terms of a series development rather 
analogous to the classical finite amplitude approximations (see Lamb 1932, for 
example). If we form, say, the covariance of the surface elevation, it might be 
anticipated that our dynamical equation will contain terms involving third, 
fourth, and all higher order covariances of the surface displacement, and in fact 
the dynamical equation for the covariance of any order involves all higher orders. 
(This is reminiscent of the theory of turbulence-see, for example, Batchelor 
(1953)-but there the equation for the covariance of order n involves only the 
order n + 1 in addition.) It seems evident that, in order to make progress, some 
approximation must be made, either in truncation of the sequences or on the 
probability distribution of the surface displacement, one possibility being the 
joint normal distribution hypothesis which enables the fourth covariances to be 
related to the second. But until we know something of the essential properties 
of the interaction process, it  is difficult to make an intelligent approximation 
which will retain these properties in our statistical theory. 

The purpose of the present paper is therefore to examine in some detail the 
‘elementary ’ dynamical interactions between pairs and among triads of wave 
components with different wavelengths and directions in order to discover the 
conditions under which a significant and continuing energy transfer can take 
place. I n  the following pages are developed a set of series expansions leading 
to a dynamical equation involving dB(k, t ) ,  the Fourier-Stieltjes transform of 
the surface displacement, which is the most accessible experimental observable. 
We have chosen to use the Fourier-Stieltjes component dB(k) rather than the 
Fourier coefficient B(k)  (which would be slightly more convenient for these 
elementary interactions) in order that the basic equations be directly applicable 
to the case of a random sea. Terms are retained to the third order, and we investi- 
gate in turn the secondary wave components arising from the second-order 
interactions of two primary waves and the tertiary wave components from the 
third-order interactions of either a primary wave with a secondary wave or of 
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three primary waves. We seek the particular types of interaction that are capable 
of providing a continuing transfer of energy from one component of the wave 
field to another, so that the latter grows at the expense of the former. With this 
information there is the possibility of making a meaningful approximation to 
the statistical problem, fully cognizant of the aspects of the interactions that 
we neglect and those that we retain. 

2. Specification of the motion 
Let us suppose that the surface displacement E(x, t )  is a stationary random 

function or a periodic function of position x = (z, y), but not necessarily of time, 
so that we can use the FourierStieltjes representation 

E(x, t )  =JkdB(k, t) eikSx, 

where the integration is over the entire wave-number plane. If E(x, t) is periodic 
in space, dB(k, t) degenerates (see Lighthill 1958) to a grid or row of Dirac delta 
functions multiplied by the element of area in the k-plane. We assume that the 
water motion is irrotational so that the velocity potentialt $(x, 0, t) at the 
horizontal plane z = 0 of the equilibrium free surface is likewise a stationary 
random (or periodic) function of x. The Fourier-Stieltjes transform dA(k, t )  is 
given by 

$(x, 0, t) = dA(k, t )  eik.I. (2.2) s, 
Our primary concern is with the case of deep water, so that we seek the solution of 

VZ$(X,Z) = 0, (2.3) 

with the boundary condition (2.2) at z = 0 and 

$ 3 0  as z+m.  

where k = I k( and z is taken vertically downwards. 
The immediate problem is to develop a dynamical equation describing the 

time history of dB(k,t) from (2.5) and the kinematic and dynamic boundary 
conditions on the free surface z = - 5. 

The Fourier-Stieltjes transform dB(k, t )  is intimately related to the dis- 
tribution of potential energy per unit area among the components of the wave 
field. The mean potential energy per unit projected surface area is (Lamb 
1932, p. 428) v = 8P9F 

c 

t Or its analytic continuation at points x where the free surface is below z = 0. 
13-2 
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where the potential energy spectrum “(k) is given from (2.1) by 

dB(k)dB*(k) 
Y(k) = 

dk,dk, ’ (2.7) 

the star denoting a complex conjugate. Non-linear interactions among the 
components dB(k) can therefore be interpreted in terms of transfer of potential 
energy from one wave-number to another. The total energy of the motion is, 
of course, made up of potential and kinetic energy (in equal parts for infinitesimal 
waves), and there is continuous interchange between the two, but for finite 
amplitude waves the definition of a meaningful kinetic energy spectrum presents 
some difficulties. This matter will be taken up in Part I1 of this paper, since it 
will not be involved in our present considerations. 

3. The equation of motion 

At the surface z = - ((x, t), 
(1) The kinematic boundury condition 

(3.1) - - - (Us)-< = - (a$/az)-,, 

where V represents the two-dimensional gradient operator @/ax, a/ay) and u, 
the downwards vertical velocity component. Thus 

- a t  = -(g)-,-(v$)-,.vf. 
at 

On replacing and $ by their Fourier-Stieltjes representations, we obtain 

dB’(k,,t)exp(ik,.x) = dA(k,,t)exp(k,f)exp(ik,.x) 
ka 

where the prime denotes a time differentiation. Expanding the factors exp (k,() 
as power series and using (2.1) again, we obtain 

/kodB’(k,,t)exp (ik0.x) 

r 

k,) dB(k,) . . . dB(k,) 

x exp [i(k,+ k,+ ... + k,) . X I  
k1k2-ldA(k,) dB(k,) ... dB(k,) 

x exp [i(k, + k, + . . . + k,) . XI. (3.3) 
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In  the nth term of each of the summations make the change of variable 

k = k,+k,+ ...+ k,, 

kl = k,, 

kn = k,, 

........................... 

and replace k, by k in the single integrals, and it follows that 

(3.4) 

Ik- kl- ... - k,l"-l 
1 m 

dB'(k, t )  = kdA(k, t )  + C 
n=l /kl ' ' * /k,, 

x - 1  k-kl- ...- k,12+kl.(k-kl- ...- kn)) (b 
x dA (k - k1- . . . - k,) d B (  k,) . . . dB(  k,), (3.5) 

where we assume that the series converges sufficiently rapidly that under at 
least some conditions (to be specified more precisely later) the first few t e r m  
suffice for a good approximation. 

The equation (3.5) is the direct Fourier-Stieltjes representation of the kine- 
matic boundary condition (3.2). It will be convenient to express dA(k, t ) ,  the 
Fourier-Stieltjes transform of #(x, 0, t )  in terms of dB(k, t )  and its time deri- 
vatives. From the first few terms of ( 3 4 ,  

kdA(k) = dB'(k) - {I k- k1I2 + k, . (k- k,))dA(k- k,) dB(k1) 
J k l  

1 k - k1- kz( (4 I k - k1- k,l + k1. (k - k1- kz)) 

x dA(k- kl- kz)dB(kJdB(k,), 
- /kl /k, 

and by successive substitutions for dA(k - k,) and dA(k - k, - k,) on the right- 
hand side, we find that, correct to third-order terms, 

dA(k) = k-ldB'(k) - D,(k, k,)dB'(k-k,)dB(k,) J ,  
where 

I 
D,(k, k1, k,) = + (k - k1- k2l2 + kl. (k - k1- k,) (3.7) 

k. (k - k,) (k- k1). (k- k1- kz) -_  
lk - kll I k - k1- kzl 

(ii) The dynamical boundary condition 
Provided we restrict our attention to wave-numbers less than about 2 cm-l for 
which surface tension effects in an air-water system are unimportant, the pres- 
sure at the free surface z = - E(x, t )  is continuous, so that 
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where p represents the pressure on the surface resulting from the air motion, 
p the water density and g the gravitational acceleration. The Fourier-Stieltjes 
transform of p(x, t) can be dehed  by 

p(x, t) = dw(k, t )  eikeX, (3.9) s 
while the corresponding transform of &x, t) is dB(k, t). It remains to develop 
expansions, correct to third order, of the other two terms of (3.8). 

Let ($)-[ = JdC(k, t )  eikaX, say, 

= /dA'(k, t) e e  eikex, (3.10) 

from (2.5).7 The exponential term in (3.10) is expanded, on the supposition that 
kE is small (in mean square), and after changing the variables of integration as 
in (3.4), we find that 

dC(k,t) = dA'(k,t)+ Ik-kildA'(k-ki)dB(ki) 
J k 1  

J 

where V = @/ax,, a/ax2), and the vertical velocity component by 

uz = !!! a2 = /kdA(k,t)eMeikmx, (3.15) 
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so that 

u2 = s 1 [kOkl - k,. k,]dA(k,) dA(k,) exp [(k, + k,) 51 exp [i(k, + k,). XI. 
ko ki 

(3.16) 

The reduction of this expression to a series of terms involving integrations over 
dB(k,t) and its time derivatives proceeds along the same lines as before. The 
three steps are (a) expansion of the factor exp [(k, + k,) E] (here two terms suffice 
to given an expression correct to third order), (b )  a change of the integration 
variables to the set (3.4), and (c) elimination of dA(k,t) from the integrals by 
using (3.6). The reader who follows the calculation through in detail will notice 
that he obtains two third-order terms involving integrals over 

dB'( k - kl) dB'( kl - k2) dB( k,) 

dB'(k - k1- k2) dB'(k1) dB(k2). and 

The first form can be reduced to the second by an obvious further change of 
variable. The end result of this calculation is that the Fourier-Stieltjes transform 
of is found to be 

lkl { 1 - k1 * (k- kl)) dB'(k - k,) dB'(k,) 
kl Ik - kll 

(3.18) 

The FourierStieltjes transform of the dynamical boundary condition (3.8) 
can now be expressed in terms of dw(k, t )  and of dB(k, t )  and its time derivatives. 
From (3.12) and (3.17), together with the supplementary conditions (3.13) and 
(3.18), it is found, after a little algebra that 

-P-'dW(k) = k-'dB"(k) +gdB(k) 

(3.19) 
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where all the transform functions are understood to be functions of time t also, 
and the primes represent differentiations with respect to t. The functions 
H,, . . . , H4 are given by 

k . (k - k,) H,(k, k,) = 1 - 
k Ik-kll 

= i-cose 
= HI( - k, - k,) ; 

k1. (k - k1) k . (k - k1) H2(k, k1) = - :{ 1 - kl/k-kl / ) -  klk-kll 

= ~ ( i - ~ ~ s ~ ) - ~ ~ s e  

= H2( -k, -kl)t 

(3.20) 

(3.21) 

FIGURE I 

the angles 8 and # being illustrated in figure 1 ; 

H3(k, k,, k2) = (2k)-l1 k - k1- k2I2 - 4 1 k - k1- k2l+ k-lk,. (k - k1- k2) 
(k - k,) . (k - k, - k2) 

+ I - kll  I k - k,l I k - k, - k2f (l- %.l(LI?/) ’ 
= H3( - k, - k,, - k9); (3.22) 

(kl -t kz) * k1 

(k - k2). (k - k1- k2) 
Ik - k1- k2l 

(kl + k,) . (k - k, - k2) 
2kl (’ - I k, + k21 I k - k, - k21 

+ 

k +- 

(3.23) 

Equation (3.19) describes the motion of the free surface retaining terms to the 
third order. The terms involving a single integration describe the second-order 
interactions and those involving a double integration the third-order inter- 
actions. It is clear that these interactions are generally rather complicated 
algebraically; our aim is to discover the types of interaction that are most signi- 
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ficant and which can be described in simple physical terms. In the present paper, 
we examine the wave dynamics when the air is undisturbed by wind, so that we 

can take dw(k,t) = 0 

in the following sections. We will first examine the properties of the second-order 
interactions by neglecting the double integral terms in (3.19) and in 9 5 we discuss 
some general properties of the full equation. 

4. Secondary wave components 
If two primary wave trains of wave-numbers K, and u, interact, the second- 

order terms of (3.19) generate components with wave-numbers u1 + K~ and K, - K,. 
These products of binary interactions between primary components can con- 
veniently be called ‘secondary’ waves, and similarly the components arising 
from the interactions among three primary waves or between a primary and 
a secondary wave can be called ‘tertiary’ components. 

Solutions to (3.19) from given initial conditions will be sought by the usual 
perturbation technique. The Fourier component dB(k, t) of the surface dis- 
placement is represented as the sum of primary, secondary, and higher com- 
ponents in a manner analogous to the classical Stokes expansion 

where dB,(k, t) is the solution to the linear equation 

and it is supposed that 

where the overbar indicates the ensemble average. The next approximation, 
yielding the secondary wave components is made by substituting 

dB,(k, t) +dB,(k, t) for dB(k, t) 
into (3.19) and retaining only the lowest (second)-order terms in the non-linear 
integrals. I n  virtue of (4.2), we have 

I k l  

dB(k,t) = dB,(k,t)+dB,(k,t)+dB,(k,t)+ ..., (4.1) 

(4.2) 

(4.3) 

k-ldB;(k, t )  +gdB,(k, t) = 0, 

IldB,(k,t)I % I/dB,(k,t)/ % *..’ 

k-ldB;(k)+gdB,(k) = - Hl(k, k,)dB~(k-k,)dB,(k,) 

-J-kLH2(k, k,)dB;(k-k,)d.B;(k,). (4.4) 

-J-kaH2(k, k,) [dB;(k-k,)dB;(k,) +dB;(k-k,)dB;(k,)l 

+Ik, s,. H3(k, k,, k,) dB;(k - k1- k,) dBl(k1) dBl(k2) 

+ s,, s, H& kl, k,) 

The tertiary components are found, likewise, by including the next term in the 
expansion, and it is found that 

k-ldB;(k) + gdB3(k) = - / Hl(k, k,) [dB;(k - k,) dB,(k,) + dBl(k - k,) dB,(k,)] 
4 

- k1- k,) dBi(k1) dB,(k,). 

Consideration of this last equation is postponed to fj 5. (4.5) 
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4.1. Single wave train 

The simplest problem is to calculate the secondary components generated by 
the interaction of an initial sine wave with itself. Although the result is well known 
the derivation will be discussed in some detail primarily to illustrate a systematic 
method of selection of the relevant constituents of the interaction. The analysis 
of more complicated situations follows exactly the same lines, so that much of 
the detail can be omitted in later sections. 

Suppose that 

dB,(k,t) = &x{S(Z-I,)exp( -in,t)+~(l+Z,)exp(inot)}6(m)dldm, (4.6) 

where no = (sU4 (4.7) 

6(Z) and 6(m) represent the Dirac delta functions and k = ( I ,  m). The expression 
(4.6) satisfies (4.2) and is the Fourier-Stieltjes representation of the primary 
component 

El(x,t) = acos(Zoz-not). (4.8) 

The secondary components are determined by (4.4). When dB,(k, t )  is of the. 
form (4.6), the integral over the wave-numbers k, has contributions only when 
both k, = ( k I,, 0 )  and k- k, = ( f I,, 0) ,  so that the right-hand side is non-zero 
only near k = ( f. 21,, 0) and (0 ,O) .  The formal process of solution is facilitated 
by integrating the whole equation over a small range containing in turn each of 
the singular points of the Dirac delta functions, so that the Fourier-Stieltjes 
transforms degenerate to the coefficients of a Fourier series. If 

where K = (K,, K2) = ( f 2Z0, 0) or (0, 0) ,  equation (4.4) becomes 

B,"(K, t )  +gKB,(K, t )  = - KJkjkl Wdk, k,)dB;(k-k,)dBl(kl) 

+ W k ,  k,) dZ(k - k,) Wk, ) } ,  (4.9) 

where the k-integration is between the limits specified above. Substitution of 
(4.6) into the right-hand side of (4.9) gives rise to eight terms, and it is a simple 
matter to pick out the ones relevant to each of the three significant values of K. 

When K = (2Z0,0), we require k = (2Z0,0), k, = (Z,,O), so that from (4.6) 
and (4.9), 

($ + 21.3 t )  = +a2gloexp ( - 2inot) {H,W~, lo) + H ~ ( ~ I ~ ,  lo)>, (4.10) 

where only the z-components of the vector arguments are specified explicitly 
(the components in the y-direction are all zero). Similarly, when K = ( - 21,, 0 ) ,  
k = ( - 2Z0, 0) and k, = ( - I , ,  0 )  so that 

(~+2Z0g~Bz( -21 , , t )  da = ~a2n~Z,exp(2inot){Hl(-2Zo, - I , )+€€ , (  -210, -Zo)). (4.11) 
J 
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The case K = 0 is trivial, the equation reducing to 

d2 
a t 2  
- B,(O, t )  = 0.  

Under the present circumstances, the functions H,(k, k,) and H,(k, k,) 
simplify considerably. Here k and k,, are of the forms (KO, 0) and (K,, 0) respec- 
tively, and from the definitions (3.20) and (3.21), 

Hl(Ko, K,) = Hl( -KO,  -K,) = 0 if KO > K,, 

if 

= 2  if K , > K , , > O ;  

=-1 if K o > K , > O ,  
&(KO, K,) = H,( -KO,  -K,) = 0 KO, K,  of opposite sign, 

= 2  if K , >  K o > O .  

The equations for the secondary components can thus be combined in the form 

&, + 2Z0g B,( 2Z0, t )  = - +a2niZ0exp ( T 2in0t). 
(d2  1 (4.13) 

Since the initial wave field was sinusoidal, the initial conditions to be imposed 
on the component B, are that 

B2=B;1=0  at t = O  

and the solution is readily found to be 

B,( f 2Z0, t )  = tl0a2exp ( T 2in0t) + A ( @ ]  - 1) Zoa2exp ( -t id [ 2 ] n o t )  

- & ( , / [ 2 ] +  1)Zoa2exp( T i d [ 2 ] n 0 t ) ,  (4.14) 

where no = (gZo)*. In  physical space, the seoondary wave components are given by 

g2(x, t )  = B,(2Z0) exp (2iZ0x) +B,( - 21,) exp ( - 2iZ0x) 

= +Zoa2cos ( 2 Z 0 x - 2 n 0 t ) + & / [ 2 ] -  1)Zoa2~os(2Zox+J[2]not)  

-$(2/[2]+ 1)Zoa2cos(2Zox-,/[2]not), (4.15) 

and the solution to the problem, correct to the second order, is 

<(z,t) = a{cos (Zox-not)++Zoacos2(Zox-not)} 

+ tZOa2{(@] - 1) cos (2Z0x+ ,@]not) - ( 4 2 1  + 1) cos ( 2 1 , ~  - ,421 not)>. 
(4.16) 

Certain properties of this solution are of interest in relation to the analysis of 
more complex situations later. The secondary wave components are of two types. 
The first is a ‘bound secondary’ component, given by the first term of (4.15),  
which has half the wavelength and twice the frequency of the primary component, 
and so travels at the same phase velocity of the primary. It represents a dis- 
tortion of the initial sine wave; the first two terms of (4.16) specify a Stokes 
permanent wave to this order. The remaining terms come from the comple- 
mentary function in the solution to (4.13),  and their amplitude depends on the 
particular initial conditions chosen for B2( k 2Z0, t ) .  They have half the wave- 
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length of the primary wave and 42 times the frequency, so that their velocity is 
that of free infinitesimal waves of the same wave-number. These can be called 
‘free secondary components’, and they are dynamically similar to the primary 
components but their amplitude is smaller by a factor of order al, 4 1. 

A point of particular interest is that the amplitudes of the secondary com- 
ponents are bounded in time. From the point of view of potential energy transfer, 
the second-order interactions in this case merely transfer a pulse of energy to 
the wave-number 2Z0, but this does not continue. The Stokes permanent wave and 
the free secondary waves propagate independently (to this order) and do not 
interact further. 

4.2. Two intersecting wave trains 
Suppose that at time t = 0, the surface displacement and velocity correspond 
to two intersecting sinusoidal waves with wave-numbers KO = (Zo,mo) and 
K, = ( I , ,  m,). The primary wave field is thus 

(,(x, t) = a cos (KO. x - not) +p cos (K, . x - n,t), (4.17) 

whose Fourier-Stieltjes representation is given by 

dB,(k,t) = Qa{S(k-Ko)exp( -in,t)+S(k+K,)exp (in,t)}dk 

+ Qp{S(k - K,) exp ( - in,t) + S(k + K,) exp (in,t)}dk, (4.18) 

where S(k-KO) = S(Z-Zo)S(m-mo) and dk = dZdm. Substitution of (4.18) into 
the linear equation (4.2) determines the frequencies no and n, of these primary 
components : 

(4.19) 

The substitution of (4.1 8) into the perturbation integrals of (4.4) for the secondary 
wave components gives rise to a total of 32 terms, not all of which however are of 
present interest. Four pairs of terms describe the development of wave-numbers 
f 2K0 and 2K,, and the generation of the Stokes waves discussed previously. 
A total of eight terms give the trivial zero wave-number case. The remaining 
sixteen gives the contributions at wave-numbers f (KO + K,) and f (KO - K,), 
and these are the ones that we wish to select. 

When K = (KO - K,), k = (KO - K,) and k, = KO or - K,. Selecting out the 
relevant terms and integrating over a small range including the Dirac delta 
functions to reduce the Fourier-Stieltjes transforms to Fourier coefficients, one 
finds that 
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say, where 

n 

n0 n1 

121 

120 

8,$) = .n,H,(Ko-K,,Ko)+H2(Ko-K,,Ko)+~H,(Ko-K,,  -Kl) 

+ %(KO - K,, - K,) 

= -Hi(-Ko+K,, -KO)+&(-Ko+K,, -KO) 

205 

n 

721 
+"Hl( - K O +  K,, K,) +I?,( -Ko+K,, K,), (4.22) 

in virtue of (3.20) and (3.21). 
Similarly, when K = - (KO - Kl), k = - (KO - K,) and k, = - KO or K,. 

Selecting the relevant terms in this case we obtain 

= IKo-K,[ a,!?n,n,I' 2, 8, exp{i(n,-n,)t}, (4.23) 

For the other secondary components, when K = 5 (KO+ K,), k = 5 (Ko+Kl) 

(:, 4 
the function I' occurring again by (4.22). 

and k, = _+ KO or 5 K,, the selection procedure gives 

(g + 9 I KO + Kll) B2C 5 (KO + K J ,  t> 

= 4 IKo+K,I a,!?n,n,A 2, 8, exp{Ti(n,+n,)t}, (4.24) (:, 4 
n 

n0 
A O, 6 4 )  = 2 Hl(Ko + K,, KO) + &(KO + K,, KO) 

n 

121 

(:, where 

+ " Hl(K0 + K,, K,) + m&.l+ K,, K,) (4.25) 

is symmetrical with respect to changes in sign of both the vector arguments or 
with respect to interchange of KO and K,. 

The equations (4.21), (4.23) and (4.24) are all of the form 

B," + v2B2 = A ei@, 

and the solutions are of the form 

or 
(4.26) 

The former possibility represents the secondary components of bounded ampli- 
tude that we have encountered in the previous section. The latter type of solu- 
tion, however, would represent a secondary wave component whose amplitude 
increases with time, or, in terms of the potential energy spectrum, it would 
represent a continuing energy transfer from one component of the wave field to 
another. 
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The condition that is required for a continuing transfer of potential energy 
between different wave-numbers is now clear. It is that the perturbation term 
for a certain wave-number should have a'frequbncy equal to the frequency of 
free inJinitesimaZ surface waves of the same wave-number. In  other words, the 
non-hear perturbation terms represent a moving disturbance that induces a 
forced motionof the higher order components. If the frequency of the disturbance 
term of a certain wave-number is equal to the frequency of a free infinitesimal 
wave of the same wave-number, then a resonance occurs, and the amplitude of 
the forced, higher order component grows rapidly. This type of resonance is 
closely analogous to that which occurs when a turbulent wind blows across the 
water surface (Phillips 1957), and we should perhaps not be surprised to find a 
similar mechanism here in view of the nature of the governing equations (4.4) 
and (4.5). 

Is there the possibility of such a resonance within this second approximation? 
Are there real wave-number vectors KO and K, such that, as required by equations 

(4.27) 
(4.23) and (4.24), 

g \KO f K,[ = (no k n,)'? 

(4.28) 

except when KO = K,. Clearly, then, there are no real solutions to (4.27) and 
(4.28) except for the difference wave-number when K O  = K,, yo-y1 = 0 that 
is, the zero wave-number case of the previous section which is trivial, since the 
coefficient A in (4.26) is zero. We conclude, then, that such solutions cannot 
occur in the second-order interactions and that these do not give rise to a con- 
tinuing energy transfer. 

The solutions to (4.21), (4.23) and (4.24), being all of the first type of the set 
(4.26) can now be written down without difficulty. For the difference wave- 
numbers & (KO - K,), the Fourier components of the secondary waves are 

together with, in each cam, the free secondary components arising from the com- 
plementary functions in the equations, whose magnitudes depend on the par- 
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ticular initial conditions imposed and which propagate, to this order, as free 
inhitesimal waves. The bound second-order perturbation waves are therefore 
given by 

a x ,  6) = *apWo~lP (C cos [(KO - K,) * x- (no - n1) 61 
+DCOS [(KO + K1). X- (no+ n,) t]}, (4.31) 

where the amplitude functions C and D are given by 

(4.32) 

L 

KO 

5 

0 

- 4  

-3 

FIGURE 2 

L 

KO 

3 

0 

-2 

FIGURE 3 

FIGURE 2. Contours of the amplitude function C for the difference wave-numbers in 
second-order interactions. The wave-number KO, represented by O L ,  interacts with K, (OM) 
to give the wave-number KO - K ,  ( M L )  whose amplitude is proportional to the value of 
the function C at the point M .  The arrows indicate the directions of propagation of the 
components. 
FIGURE 3. Contours of the amplitude function D for the sum wave-number in second- 
order interactions. The amplitude of the component with wave-number KO+ K, is given 
by the value of the function at the point M .  
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The numerical values of these functions are illustrated in figure 2 and 3. They 
are symmetrical about the direction of KO, and have the same values at  reciprocal 
points inside and outside the circle, so that only the region K ,  < KO with angles 
of intersection between 0 and m, need be shown. The important property to 
observe in this context is that, unless K,/K, is very small (or very large) the 
amplitude functions are of order unity. The amplitudes of the secondary wave 
components are thus always small, of order (a/3)* (aK,/3K1)*, that is, of the order 
of the geometric mean of the primary wave amplitudes times the geometric mean 
of the maximum primary wave slopes. 

When the magnitude of one of the primary wave-numbers is much greater than 
that of the other, K J K ,  is very small (or very large), and we are concerned with 
short waves superimposed on a very much longer wave. The properties of such 
a system can be derived readily from the expressions given above. This situation 
has been discussed in detail by Longuet-Higgins & Stewart (1960) who show 
that the influence of the shorter waves upon the longer can be described in terms 
of a ‘radiation’ stress. A number of other special cases are of some interest. When 
KO = K,, we have the Stokes permanent wave discussed previously. When 
KO = - K,, the second-order approximation to standing waves is obtained. 
Finally, figures 2 and 3 show that for certain combinations of KO and K,, either 
C or D is zero, so that the amplitude of the secondary components of either the 
sum or difference wave-number vanishes. 

5. Tertiary wave components 
It appears that our search for a mechanism of continuing energy transfer will 

have to be carried to the next approximation. The algebraic complications 
become much greater, and careful use of our selection procedure is essential if 
we wish to avoid being buried under an avalanche of terms. Let us consider first 
the distortion of an initially sinusoidal wave, to this order of approximation. 

5.1. Xingle sinusoidal wave train 

We can ignore here any free secondary components, since they propagate as 
free infinitesimal waves, and their interactions with the primary wave system is 
of the same nature as discussed in the previous section, except that the products 
are smaller by an order of magnitude (i.e. by a factor aK,). The dynamical pro- 
cesses that are new to this situation are the interactions between the primary wave 
and the bound secondary component, given by the single integral terms on the 
right-hand side of (4.5), and the triple interactions of the primary wave with 
itself, given by the double integral terms of that equation. The primary and 
secondary wave components are given by (4.6) and (4.14), namely 

dB,(k, t )  = &a{S(Z - I,) exp ( -in,$) + & ( I +  1,) exp ( h o t ) }  6(m) dldm, 

dB,(k, t )  = &Z,a2{6(1- 21,) exp ( - 2in,t) + 6(E+ 21,) exp (2in,t)} 6(m) dldm. 
} (5.1) 

The substitution of these expressions into the right-hand side of (4.5), gives 
rise to contributions when k = ( & I,, 0) and ( +_ 31,, 0). The various combinations 
that occur are given in table 1 below, in which the signs associated with an entry 
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in each column is taken as the upper or lower alternative throughout. Thus, in 
the primary-seconbry interactions, the primary wave-number I, and the 
secondary 21, give rise to  the tertiaries 31, or - I ,  (the sum or difference) with the 
associated time factors exp ( - 3in,t)  or exp (inof) respectively. Similarly, in the 
triple primary interactions, the wave-numbers I, and - I, give rise to a tertiary 
component of wave-number I ,  or - I ,  (in combination with a third primary of 
wave-number 1, or - lo )  with a time factor of exp( -$not) or exp(in,t) respec- 
tively. 

Primary Secondary Tertiary 
wave -number wave -number wave -number Time factor 

f I, f 21, f 310 exp ( 7 3in,t) 
exp ( f in,t) 

f lo + 21, T 1, exp ( f ino$) 
f I ,  T 21, f 310 exp ( T 3in,t) 

(a) Primary-secondary interactions 

- 
f 2, f 21, + 10 - 

Tertiary 
wave-number k 

k, k, ( k - k , - k ,  = fl,) Time factor 

f I, f 1, f 310 exp ( T 3in,t) 
f I I ,  f 1, f I, exp ( T in,t) 
-+ 1, T I ,  * 1, exp ( T h o t )  

exp ( f in, t) 

(b) Triple primary interactions 

- f l ,  + go T I ,  

TABLE 1. Wave-numbers involved in third-order interaotions 
of an initially sinusoidal wave train. 

As before, it is convenient to integrate equation (4 .5)  over a small range of k 
containing the wave-number of interest, to obtain the Fourier weficients for this 
wave-number. The selection of all the relevant terms can now be made, and it 
is found, for example, that when k = (3Z0, 0 ) ,  the primary-secondary interaction 
term gives 

@,a3n;exp ( - %not) {&(3&, 21,) + 4H1(31,, I , )  + 2H2(31,, 21,) + 2H,(3Z0, .lo)>, (5 .2 )  

where the numerical coefficients of the H functions arise from the time differ- 
entiation of the double frequency secondary components and where only the 
vectorial components in the x-direction are shown in the arguments. The triple 
primary interaction term yields 

- &a3n;exp ( - 3inot) {H3(3&, I,, 1,) + &(3&, lo, lo)>. (5.3) 

The values of HI and H, are given, for this simple case, by (4 .12) ,  and H3 and 

The calculations, though still rather tedious, are quite straightforward, and 
H4 are evaluated from the expressions (3.22) and (3.23).  

lead to the following expressions for the combined perturbation terms: 

(5.4) 

Fluid Mech. 9 

- 3  gol 3 no.!, 2 exp ( T 3in,t) when 

when k = ( 5 I,, 0). 
k = ( k 31,, 0 ) ,  

+a3ntZ0 exp ( T h o t )  
14 
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The dynamical equations for the tertiary components are therefore 

(5.5) 

(5.6) 
together with complementary terms representing free tertiary waves. The second 
equation of the set (5.5), however, is of the second type of (4.26) and its solution 
represents a sine wave whose amplitude increases linearly with time : 

i ($+ 310g) B3( f 3l,, 0) = -#a3niliexp ( T  3in,t), 

dtz + log B3( f I,, 0) = +a3ngZt exp ( T in,t). 

The first of these equations has the bounded amplitude solution of the first 
type of the set (4.26), namely 

r2 
B3( * 3z0, 0) = &a3z;exp ( T 3in,t), 

B3( f I , ,  0) = & 5a313n,t) exp ( T in,t). (5.7) 

The complete bound tertiary wave components are given by 

t3(5, t )  = B3(l09 t )  exp (iZ,z) +B3( - I, ,  t )  exp ( - iZ,x) +B3(3&, t )  exp (3i10x) 

+ B3( - 3Z0, t )  exp ( - 3iZ0z) 

= ia3Zin, t sin (to 2 - not) + #a3Zi cos 31 lo z - not), (5.8) 
and the surface displacement, to the third approximation is 

&,t) = ~ [ C O S  (l,x-n,t)+~a~l~n,tsin(Z,x-n,t)] 
++a2Z,cos 2(Z0z-n,t)+~a31~cos3(Z02-n0t). (5.9) 

Here we have our first example of a developing tertiary component in which the 
frequency of the perturbation term at k = ( f I , ,  0) is the aame as the frequency 
of a free infinitesimal surface wave of the same wave-number. This example is, 
however, rather special in that the wave-number at which the tertiary com- 
ponent grows under this resonance type of interaction is the same as the primary 
wave-number. But the phase of the growing tertiary component is in advance of 
the phase of the primary wave by in; this transfer of potential endrgy to the same 
wave-number at an earlier phase can be (and usually is) interpreted as an in- 
creme in the phase speed of the primary component. As it stands, the solution 
(6.9) is only valid for not 4 (+azli)-l, after which the developing tertiary wave 
has an amplitude comparable with that of the primary wave, but the increase in 
phase velocity is readily found. For this time interval, 

4a31i no t fi sin ( iazli no t )  , 
so that 

COB (lox - not) + $azZi no t sin (Zoz - not) e COB (1 ,  x - ( 1 + +a%?;) not}, 

and the phase velocity c is given by 

where c, = no/lo = (g / lo )a ,  in accord with the classical Stokes expression (see 
Lamb 1932,s 250). Notice that the interaction time, or the time scale of develop- 
ment of the resonant tertiary component is of the order of ( -  2)-power of the 
maximum primary wave slope times the wave period. 

(5.10) 

c = co( 1 + gaaz;), 
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5.2. Two intersecting wave trains 
Suppose that initially we have two intersecting wave trains with wave- 

numbers KO = (Zo,mo) and K, = (Zl,ml). As in (4.18) the Fourier-Stieltjes 
components of the primary wave field are given by 

dB,(k, t) = +a{6(k-Ko)exp ( -inot)+6(k+Ko)exp (in,t)}dk 
+@(S(k-K,)exp ( - in,t)  +S(k+K,)exp (in,t))dk, (5.11) 

Primary Secondary Tertiary 
wave -number wave-number wave-numbers 

k KO * 2Ko f3K0,  f K o  (Stokes wave) 
- - k 2Ki f (KO f 2K1) + KO 

f KO 
k KO 

- k (KO - Kl) * (KO + K J  
f (2Ko- KJ, + K1 
k (2Ko + Kl), * K1 - 

(a)  Primary-secondary interactions 

Primary wave-numbers Tertiary wave-numbers 

f K o  +KO * K O  +3Ko, +KO (Stokes wave) 
*KO +KO + K ,  f (2Ko * Kl), f K1 _. 

+KO +K1 kK1 k (KO + 2K1), * KO - 
+K1 +K1 k K ,  f3K1,  kK1 (Stokes wave) 

( b )  Triple primary interactions 

TABLE 2. Wave-numbers involved in the third-order interactions of two intersecting 
wave t rak .  In part (a) ,  further possibilities are obtained by interchanging the 
subscripts. 

and the secondary components are, from (4.14), (4.29) and (4.30), 

dB,(k,t) = $Koa2{6(k-2Ko)exp ( -2inot)+S(k+2Ko)exp (2in0t)}dk 
+$Klpz{S(k-2K,)exp ( -  2in1t)+6(k+ 2K1)exp(2in,t)}dk 

+ $ap(K,K,)$ C{6(k - KO + K,) exp [ - i(no - n,) t ]  

+ 6(k + KO - K,) exp [i(no - n,) t ] }  dk 

+ $ap(KoK,)* D{S(k - KO - K,) exp [ - i(no + n,) t ]  

+ 6(k + KO + K,) exp [i(no + n,) t ] }  dk, (5.12) 

where the functions C and D are as given in (4.32). These expressions, if sub- 
stituted into the right-hand side of (4.5), would give a total of 256 terms, all of 
which, fortunately, are not of present interest. The various types of interactions 
can be classified according to table 2 above. The exponential time factors are 
not indicated, but in every case the exponent has the same atmcture as the 
wave-number vector except that the signs are changed. For example, associated 
with the contribution at wave-number 2K0 - K, is the factor 

exp { - i(2n0 - n,) t}. 

The components of particular interest are those with wave-numbers 
f (2K0 f K,) (or the symmetrical type k (KO f 2K,)). We will first investigate 

14-2 
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whether the resonance interaction is possible apart from the special case dis- 
cussed in the previous section, which requires the existence of real solutions to 

(5.13) 
the equation 

where no = (gKo)*, n, = (gK,)*. Making as before, the substitutions 

g I2Ko & K,I = (2no k 

(5.14) 

-0 .5 t 
FIGURE 4. The resonance loop for third-order binary interactions. The wave-number K, 
interacts with the bound secondary component associated with KO to produce a developing 
component of wave-number 2K, - K,. The arrows represent the directions of propagation. 

it appears that resonant interactions are possible, but only for certain pairs of 
the dinereme wave-numbers & (2K0 -KJ (or for f (KO- 2K,)) for which the 
negative sign in (5.14) is relevant. Figure 4 represents the function 

2(7+4) 3 6, cos(yo-y,) = 
47 7 

(5.15) 

where 7 = K,/Ko, and illustrates the primary wave-numbers K, which can 
produce a resonant interaction with the secondary component of given wave- 
number ZK,, resulting in a continuing energy transfer to the wave-number 
f (2Ko-K,). It can readily be confirmed that these resonant tertiary wave- 
numbers do not coincide with any of the secondary wave-numbers generated, 
for this would require 

2K0-K1 = f 2K0, f ZK,, & (K,+K,) or 

or equivalently K, = - 2K0, 0, &KO, #KO, QK,, 4K0 or co, 

& (KO-&), 
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none of which lie on the resonance loop of figure 4. The physical reasons for this 
type of energy transfer have been described in $4.2. Although it was not possible 
within the second approximation, it appears that, within the third approximation 
it is. 

Having established the existence of the resonant type of continuing potential 
energy transfer, it only remains for us to estimate the order of magnitude of the 
coefficient A in the second equation of the set (4.26) to provide an estimate of 
the characteristic interaction time, or the development time of the growing 
tertiary component. Selecting out the relevant contributions as before, it  is 
found that the Fourier coefficient at the wave-number 2K0 - K, is given by the 
solution of 

= & 12Ko - & I  (KO&)* nonla2PTf(7, y )  exp { - @no - n,) t>, (5.16) 

where 7 = K,/Ko and y is the angle between the two interacting wave-numbers. 
The functionf(7, y )  is given by 

f (7, 7) = (KO/Kl)* {C(Ko, Kl) [H1(2KO - K,, KO - K,) + H2WO - Kl, KO - K1) 
+ &(2KO - K,, KO) + Hz(2KO - Ki, KO)] + 4(K0/K1)* Hl(2KO - Kl, - KJ 

-(KoK1)-*[Ha(2Ko-K1, -K1, Ko)+H3(2KO-K1,Ko, -K1) 

+ H4(2K0 - K1, KO, - 
+ 2(Ko/Kl)* [4(2KO - K,,2Ko) + H2(2Ko - K1, - K,)] 

- C(K0, K1) [2H,(2Ko - K,, KO) + H2(2K, - K,, KO - K,) 

+ HZ(2KO - K,, KO11 
- (KoK,)-* [H4(2KO-K1, KO, KO) +H4(2KO-K,, -Kl>Ko)] 

+ (KdKo)' {(Ko/Ki)* Hi(2Ko - Ki, 2Ko) + C(K0, K1) Hi(2Ko - K1, KO) 
- ( K O K l ) - *  - K1, KO, KO)}, (5.17) 

where the function C is as given in (4.32), and the H functions are specified by 
(3.20) to (3.23). The equation for the wave-number - (2K0- K,) is similar (since 
all the terms in f(7, y )  are invariant with respect to changes in the signs of all 
wave-numbers) except that the exponential factor is exp {i(2n0 - n,) t). When 

the solution to equation (5.16) is 
9 I2KO - KlI = (2no - %,I2, (6.18) 

&{ 5 (2Ko-K,),t} = Ti$ia(Koa) (KIP) (2no-n&t.f(~,y)exp{ Ti(2no--n,)t), 
so that the growing tertiary component is (5.19) 

t&,t) = +Olf(r,y) (Koa) (KlP) (2~o--n,)t.sin{(2Ko--K,).x- (212,--,)t). 
(5.20) 

The numerical value of the functionf(7, y )  for wave-numbers such that (5.18) 
is satisfied could be computed from (5.17), but this would be an extremely tedious 
operation. It is sufficient for our purpose to know its order of magnitude only. 
We do already know (either by comparison with the first term on the right-hand 
side of (5.8),  or by direct calculation from (5.17)) that when KO = K,, f(q, y )  = 2. 
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Since, on inspection of the forms of the functions H,, . . . , H,, it is evident that 
f(q, y )  has no singularities, it is safe to assume that this function is of order unity 
for all wave-number pairs given by the crossed loop of figure 4. 

We can therefore conclude that the characteristic development time of the 
resonant tertiary interactions, or the time for the amplitude to become com- 
parable with that of the primary, is of order 

(5.21) 

that is, of order of the wave period of the tertiary component divided by the 
product of the maximum slopes of the primary waves. As the tertiary component 
develops, the primary components of coume begin to subside as the energy is 
transferred to the tertiary components. This decay is described by the presence 
of tertiary terms of wave-number f KO and f K, in the last two rows of table 2a, 
and the middle two rows of table 2 b, and can be calculated in a manner analogous 
to that above. 

In  the light of this analysis, the exceptional nature of the Stokes permanent 
wave is perhaps more evident. Figure 4 shows that this is the only situation in 
which the resonant tertiary wave-number is equal to that of the primary wave, 
and so provides the only case in which the tertiary interactions can be inter- 
preted as a change in phase velocity of the primary wave. In  all other binary 
interactions, the wave-number of the resonant tertiary component is different 
from that of either primary, so that a new Fourier component of the wave field 
develops in time. 

Finally, it  might be remarked that the triple interactions among three different 
primary waves can also give rise to a developing tertiary component with a new 
wave-number. The situation discussed above is clearly a special case of this, 
when two of the primary wave-numbers coalesce. The analysis of the more general 
case is, however, complicated and little of conceptual value is to be gained from it. 

6. Secondary interactions in water at finite depth 
We have found that, in water of infinite depth, if the wave-number and 

frequency of the interaction term correspond to the wave-number and frequency 
of a free infinitesimal wave, then we have a resonant situation in which the 
amplitude of the interaction wave increases linearly with time. The interaction 
wave-number is the vector sum or difference of the primary wave-numbers, and 
the frequency is the sum or difference of the primary frequencies. The simplicity 
of this criterion and of its physical interpretation makes it possible to anticipate 
the qualitative nature of the interactions when the water depth is not necessarily 
large compared with any of the wavelengths involved. 

The detailed analysis of this case is very complicated, but the form of the 
basic equations is not changed. Two primary wave-components of wave-number 
KO and K, give rise to an interaction term with wave-numbers f (K,+K,), 
f (KO - K,) and frequencies no + n, and no - n,, where 

no = {gK, tanh Kod}*, 

n, = {gK, tanh K,d}*, 
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where d i s  the mean water depth. If 

(no+nl)a = g ~ K o + K l ~ t a n h [ ~ K o ~ K , ~ d l ,  (6.2) 

then resonant interactions can occur for the secondary components. The question 
of the existence or otherwise of real solutions to (6.2) can be most easily esta- 
blished by the following geometrical argument. 

I n  figure 5, the curved line represents the function 

(:)*n = {Kd tanhKd}*, 

specifying the frequency of free infinitesimal surface waves in water of mean depth 
d as a function of wave-number K.  The slope of this curve decreases monotonic- 
ally with increasing K ,  except when Kd Q 1, when it is constant. Suppose we 

2 i -- - -  

x 
s 

I I 

Kd 

FIGURE 5. Second-order wave-numbers and frequencies in water of finite depth. 

have two primary components of wave-numbers KO and K, and frequencies 
no and n,. The interaction frequencies are therefore no + .n, and no - n, and the 
magnitudes of the interaction wave-numbers lie within the limits ~Ko.+Kl~ 
and ~ K , , - K , ~ ,  whatever the angle of intersection of the primary waves. If the 
frequencies no + n, or no - n, correspond to wave-numbers lying within that 
range, then a resonance is possible. It is clear from figure 6 ,  however, that in 
general this is not so, since the curve is concave downwards and the difference 
frequency corresponds to a wave-number less than IKo-K,I and the sum 
frequency to a wave-number greater than ( K O  + K,( . A trivial exception is given 
when KO = K,; the difference terms give the zero frequency, zero wave-number 
case discussed above. 

More interesting is the case when for all wave-numbers K concerned, Kd Q 1. 
In  this shallow water case,t the phase velocity of an infinitesimal wave is in- 

? Caution must be exercised lest the mall  amplitude approximation be pressed too far 
in shallow water. Stokes (1847) showed that this approximation is valid only when 
aK < (Kd)3, so that when Kd is small, aK is required to be very small indeed. 
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dependent of the wave-number so that the dispersive nature of the waves is 
lost and the frequency curve reduces to a straight line (ngure 6). It is evident 
that the sum and difference frequencies correspond to sum and difference wave- 
numbers at the ends of the permissible range, which are attained when KO and Kl 
are parallel. Thus, in very shallow water, any pair of parallel wave-numbers will 
produce resonant interactions in the sense described above. This may also be 
deduced directly from (6.2), since 

tanh []KO k KII d ]  == ]KO + KII d 
under these circumstances. 

(n ,+n, )  - - - 

v j ,  / ,  , i ,  
%-K1 Kl Kl %+Kl 

0 0.2 0.4 

Kd 

FIGURE 6. Second-order wave-numbers and frequencies in very shallow water. 

It may also be interesting to notice that if the difference frequency (say) is 
only slightly smaller than the frequency of a free surface wave of the difference 
wave-number, then there is no resonance but, for the first equation of the set 
(4.26), the amplitude of the bound secondary component is inversely propor- 
tional to this frequency difference (shown as An in figure 5 ) .  If IK, - KII d is of 
order unity or a little less, An may be small, so that the amplitude of the secon- 
dary waves, though bounded in time, may be large and the second-order inter- 
actions may assume considerable dynamical significance. The tendency for waves 
to break over shoals, indicating appreciable non-linear interaction, is consistent 
with this general conclusion. 

7. Conclusions 
The principal result of this analysis is the demonstration that, although the 

tertiary interactions among wave components are given by a perturbation term 
that is algebraically smaller than that representing the secondary interactions, 
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their cumulative dynamical effect is much more profound because of the exist- 
ence of resonant wave-numbers whose amplitude grows with time. This implies 
that, in the development of a dynamical theory to describe a finite amplitude 
random gravity wave field, the tertiary interactions are essential, and any theory 
in which they are neglected will ignore the dominant mechanism of energy 
transfer among the wave components. 

The results, however, do have immediate relevance to the question of the 
interaction between a swell and a local storm. Suppose that swell with wave- 
number KO (figure 4) is generated by a distant disturbance on the ocean and 
passes through a storm area. If the wave-numbers K, of the locally generated 
waves lie along the crossed loop of figure 4, then appreciable components with 
wave-number 2K0 - K, may be generated by the resonant interaction, and would 
appear as a ‘ghost’ to an observation station. The wave-number and direction 
of this ghost component may be very different from the dominant contributions 
to the storm or the swell, and should be readily distinguishable from com- 
ponents of the swell scattered by the turbulence in the water near the storm 
centre (Phillips 1959). 

This work was supported by the Office of Naval Research under Contract 
Nonr 248 (56). 
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